Case Study: 2.3KW 8 hour UPS Solution

Brief:

We were asked by a customers to come up with a UPS solution that will provide 8 hours of runtime for a load of 2300W to provide power for essential services at a new construction project in the Midlands.

Construction Site

The requirement was to deliver, position, install and commission the system and as requested we handled the project from Concept through to the Execution.

The first part is to ensure we have a UPS powerful enough for the load and make the decision on extra battery cabs or a bespoke battery solution. We could use one of our VFI3000T units, a 2700W unit – so powerful enough – and fit extra cabinets to this. The problem is we would need 19 additional cabinets to hit this amount of runtime! Clearly another solution was needed.

Our B16 cabinets (BCAB-B16) are very flexible and can support up to sixteen 100Ah blocks. Looking at the UPS requirement the best solution would be the VFI3000BL. This is a extended run UPS system, meaning it does not contain internal batteries but has a larger charger for connection to a large external cabinet. Most UPS only have a charger rated at around 1A, so connecting a 100Ah battery string would then require around a week to recharge following an outage, with the possibility that the battery would never get to 100% charge. The VFI3000BL has a massive 12A charger so will not suffer from such consequences.

The UPS has an input battery voltage of 72V, which is 6 blocks in the battery string. We can fit 2 strings in the B16 cabinet and this would give us a 72V 200Ah battery. Even with this capacity the runtime was still too short at only 4 hours. A second B16 cabinet would do the trick. With a further two strings added the achievable runtime was now calculated to be 9 hours and 48 minutes. Not only does this provide some overhead in the 8 hours requirement, it extends the working life of the installation as the batteries degrade with time and so 8 hours will still be achievable years from now. As longevity is an issue, the batteries used were our 100Ah deep cycle blocks, with 10 year design life (6FM100E-X). Not only that, but these blocks are rated at 100Ah when discharged at 10% of capacity, rather than lower cost blocks which are rated the same but at a 5% of capacity discharge (this is 10hour vs 20hour rating for those who know about such things).

So now the design of the system was finalised we had to plan the install on site.

Installation:

First thing was to get our Wall mounted Maintenance Bypass Switch installed on site. This was sent to site in advance for the site electricians to install. This would allow ongoing power to be connected to their systems if they so desired and we can connect the UPS into play without affecting ongoing operations should this be required. 

The B16 cabinet comes as a flat pack assembly which delighted the client. Previously for another site he had a battery cabinet delivered that weighed over a ton and had to somehow get this maneuvered into place. Not only did this prove to be extremely difficult, but the physical toll of this caused injuries to some personnel. In our case the two B16 cabinets and 24 batteries came on a pallet in the back of the company van and these were fork lifted off and placed just inside the building. We then decanted the pallet in manageable loads onto a trolley and wheeled these into position.

Battery cabinet install b16 cabinet

Note the finished B16 cabinet on the right, the second cab under construction and the wall mount bypass switch.

As usual, something unexpected does crop up and we try to plan for the unexpected. The client’s preferred position for the cabs was in the centre of the room but some ducts that was supposed be on the far left happened to be placed directly under where the cabs were supposed to be. However the footprint of the cabs and the UPS is so small we were able to put the cabs adjacent to the ducting and in a more preferred location. Once this was decided the first cab was assembled, followed shortly afterward by the second cabinet. For safety reasons we only have one person making connections to the cab at any one time. Here our qualified technician Ray (complete with ECS approval) did a sterling job.

Each cab is fitted with a DC breaker / isolator and the configuration is such that individual strings or the cabinets can be isolated to allow for relocation or service, not only maintaining power to the system (as you would with a bypass), but also maintaining UPS support.

Once the cab was assembled and tested, the UPS was connected and configured as per the clients requests. Positioning of the UPS is important to ensure adequate air flow and ease of operation and it was decided to be placed behind the cabinets in vertical orientation. This allows all cables to be neatly out of the way whilst allowing ease of viewing of UPS status. However this site was still a building site and so the floor was not yet finished and there was excessive dust that would be sucked into the UPS causing problems down the line. As a result the leads connecting to the UPS were made long enough for the UPS to sit in horizontal orientation on top of the B16 cabinet whilst work was completed and to be moved into position at a later date.

Finished project:

Install complete - b16 cabinet

Once we’ve confirmed correct operation all was done and the client was then ready to connect his data cabinet up complete with UPS support.

Not only did Power Inspired provide a technically sound electrical solution, the physical properties were also a bonus to the customer, coupled with an ease of installation and a job that was completed in well under a day – including the all important ‘site inductions’.

A successful Project delivered with top-rate communications from our customer. Thank You R.

 


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses cookies for functional, security and analytical reasons. To use this site cookies must be enabled. Please refer to our Privacy & Cookie Pages for further details.

Google Chrome:

Mozilla Firefox:

Microsoft Edge:

Safari:

Opera: